Low Contact Resistivity of PtHf Silicide Utilizing Dopant Segregation Process

^oShun-ichiro Ohmi[†], Mengyi Chen[†] and Yasushi Masahiro[‡] **†Tokyo Institute of Technology, ‡TANAKA Kikinzoku Kogyo Co., Ltd.** J2-72, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

E-mail : ohmi@ee.e.titech.ac.jp, chen.m.ac@m.titech.ac.jp

1. Introduction

 $\overline{\mathcal{N}}$

Tokyo Tech

3 S. Kudo et al., IEEE Trans. Semicond. Manuf., 27, pp. 16-21 (2014). *1 S. Datta et al., VLSI Tech. Dig., 174 (2014). *2 C.-N. Ni et al., VLSI – TSA Tech. Dig. (2013).

2. Experimental Procedure

p-Si(100)

JEOL JEC-SP360R

p-Si(100) cleaning (SPM, DHF x 2) Field oxide: 300 nm/1100°C Active region patterning Ion implantation for n⁺ region formation: PH₃, 5x10¹⁵ cm⁻², 15 keV SiO₂ deposition: RF sputtering T_{sub} : 250°C, Ar/O₂: 9/3 sccm, 130 nm Activation annealing: $900^{\circ}C/20$ min, N₂ Contact hole patterning: $(2 \times 2) - (16 \times 16) \mu m^2$ RF magnetron sputtering: PtHf (Pt:Hf=5:2) deposition (20 nm) Pre-sputtering: 100 W/5 min or 80 W/3 min Depo.: 40 W, RT, Kr, 0.7 Pa HfN deposition (10 nm) Pre-sputtering: 200 W/10 min Depo.: 200 W, RT, Kr/N₂, 0.48 Pa Ion implantation for dopant segregation: PH₃, 1x10¹⁵ cm⁻², 15 keV Silicidation: 450°C/5-60 min, N₂/4.9%H₂ Selective etching by BHF, Aqua regia Al electrode

Evaluation

4. Optimization of dopant segregation process

